【韋拉圖解】 Williotdiagram
【辭書名稱】力學名詞辭典
Williot圖解是以相對各邊平行之相似三角形法則,選用任意適當比例求交點繪圖,求解位移未知數的方法,未知數可由比例圖中測量,或用三角函數關係計算之。
茲舉例說明如下:平面三桿件鉸接結構ABC,如圖1所示,在C點施以垂直向下之拉力p;
求C點之水平位移△h及垂向位移△v之圖解法步驟如下:1.選用適當長度垂直向下線段代表p力,經過p之兩端繪S2平行AC,S1平行CB,此一封閉三角形即代表桿件內力關係,S1為CB內力是拉力,S2為AC內力是壓力。
2.由桿件斷面A;
長度ℓ;
外力S及材料彈性常數可個別計算BC之伸長量δ1,及AC之縮短量δ2。
3.繪變形圖,因S1為拉力,故δ1以正E值表示,代表申張量;
S2為壓力以負值表示,代表收縮量;
依此在C端沿BC繪CC'段;
沿CA繪CC'段;
經過C點繪BC垂線,經過C'繪AC垂線,兩者相交於C1點,三角形ABC1,即表示為受力變形後之結構,如圖2所示,圖中CC1,表示C點受力後移動之距離及方向。
4.經過CC1兩端繪製水平及垂直線段相交於d,C1d即為所求之△h,Cd即為所求之△V,均可由圖中測量得之,如圖3中所示。
轉自:http://edic.nict.gov.tw/cgi-bin/tudic/gsweb.cgi?o=ddictionary
|